Copied to
clipboard

G = C24.47D14order 448 = 26·7

5th non-split extension by C24 of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.47D14, C23.43D28, C23.11Dic14, C14.86(C4×D4), C2.4(D4×Dic7), C22⋊C44Dic7, C22.98(D4×D7), C14.31C22≀C2, C221(C4⋊Dic7), C22.42(C2×D28), (C22×C14).63D4, (C22×C4).90D14, C2.3(C22⋊D28), (C22×C14).14Q8, C73(C23.8Q8), (C2×Dic7).174D4, C14.17(C22⋊Q8), (C23×Dic7).5C2, C23.13(C2×Dic7), C14.C4230C2, (C22×C28).59C22, (C23×C14).33C22, C22.25(C2×Dic14), C23.280(C22×D7), C22.46(D42D7), (C22×C14).325C23, C2.7(C22⋊Dic14), C2.4(C22.D28), C22.39(C22×Dic7), C14.30(C22.D4), (C22×Dic7).184C22, (C2×C28)⋊6(C2×C4), (C2×C14)⋊3(C4⋊C4), C14.31(C2×C4⋊C4), (C7×C22⋊C4)⋊7C4, (C2×C4)⋊2(C2×Dic7), C2.7(C2×C4⋊Dic7), (C2×C4⋊Dic7)⋊10C2, (C2×C14).35(C2×Q8), (C2×C14).319(C2×D4), (C2×C22⋊C4).13D7, (C14×C22⋊C4).15C2, (C22×C14).50(C2×C4), (C2×C23.D7).12C2, (C2×C14).142(C4○D4), (C2×C14).178(C22×C4), SmallGroup(448,484)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C24.47D14
C1C7C14C2×C14C22×C14C22×Dic7C23×Dic7 — C24.47D14
C7C2×C14 — C24.47D14
C1C23C2×C22⋊C4

Generators and relations for C24.47D14
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=c, f2=b, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce13 >

Subgroups: 916 in 234 conjugacy classes, 91 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C23.8Q8, C4⋊Dic7, C23.D7, C7×C22⋊C4, C22×Dic7, C22×Dic7, C22×Dic7, C22×C28, C23×C14, C14.C42, C2×C4⋊Dic7, C2×C23.D7, C14×C22⋊C4, C23×Dic7, C24.47D14
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, D14, C2×C4⋊C4, C4×D4, C22≀C2, C22⋊Q8, C22.D4, Dic14, D28, C2×Dic7, C22×D7, C23.8Q8, C4⋊Dic7, C2×Dic14, C2×D28, D4×D7, D42D7, C22×Dic7, C22⋊Dic14, C22⋊D28, C22.D28, C2×C4⋊Dic7, D4×Dic7, C24.47D14

Smallest permutation representation of C24.47D14
On 224 points
Generators in S224
(1 175)(2 147)(3 177)(4 149)(5 179)(6 151)(7 181)(8 153)(9 183)(10 155)(11 185)(12 157)(13 187)(14 159)(15 189)(16 161)(17 191)(18 163)(19 193)(20 165)(21 195)(22 167)(23 169)(24 141)(25 171)(26 143)(27 173)(28 145)(29 97)(30 124)(31 99)(32 126)(33 101)(34 128)(35 103)(36 130)(37 105)(38 132)(39 107)(40 134)(41 109)(42 136)(43 111)(44 138)(45 85)(46 140)(47 87)(48 114)(49 89)(50 116)(51 91)(52 118)(53 93)(54 120)(55 95)(56 122)(57 106)(58 133)(59 108)(60 135)(61 110)(62 137)(63 112)(64 139)(65 86)(66 113)(67 88)(68 115)(69 90)(70 117)(71 92)(72 119)(73 94)(74 121)(75 96)(76 123)(77 98)(78 125)(79 100)(80 127)(81 102)(82 129)(83 104)(84 131)(142 212)(144 214)(146 216)(148 218)(150 220)(152 222)(154 224)(156 198)(158 200)(160 202)(162 204)(164 206)(166 208)(168 210)(170 211)(172 213)(174 215)(176 217)(178 219)(180 221)(182 223)(184 197)(186 199)(188 201)(190 203)(192 205)(194 207)(196 209)
(1 189)(2 190)(3 191)(4 192)(5 193)(6 194)(7 195)(8 196)(9 169)(10 170)(11 171)(12 172)(13 173)(14 174)(15 175)(16 176)(17 177)(18 178)(19 179)(20 180)(21 181)(22 182)(23 183)(24 184)(25 185)(26 186)(27 187)(28 188)(29 111)(30 112)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 91)(38 92)(39 93)(40 94)(41 95)(42 96)(43 97)(44 98)(45 99)(46 100)(47 101)(48 102)(49 103)(50 104)(51 105)(52 106)(53 107)(54 108)(55 109)(56 110)(57 118)(58 119)(59 120)(60 121)(61 122)(62 123)(63 124)(64 125)(65 126)(66 127)(67 128)(68 129)(69 130)(70 131)(71 132)(72 133)(73 134)(74 135)(75 136)(76 137)(77 138)(78 139)(79 140)(80 113)(81 114)(82 115)(83 116)(84 117)(141 197)(142 198)(143 199)(144 200)(145 201)(146 202)(147 203)(148 204)(149 205)(150 206)(151 207)(152 208)(153 209)(154 210)(155 211)(156 212)(157 213)(158 214)(159 215)(160 216)(161 217)(162 218)(163 219)(164 220)(165 221)(166 222)(167 223)(168 224)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 216)(2 217)(3 218)(4 219)(5 220)(6 221)(7 222)(8 223)(9 224)(10 197)(11 198)(12 199)(13 200)(14 201)(15 202)(16 203)(17 204)(18 205)(19 206)(20 207)(21 208)(22 209)(23 210)(24 211)(25 212)(26 213)(27 214)(28 215)(29 76)(30 77)(31 78)(32 79)(33 80)(34 81)(35 82)(36 83)(37 84)(38 57)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(85 139)(86 140)(87 113)(88 114)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 121)(96 122)(97 123)(98 124)(99 125)(100 126)(101 127)(102 128)(103 129)(104 130)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(111 137)(112 138)(141 170)(142 171)(143 172)(144 173)(145 174)(146 175)(147 176)(148 177)(149 178)(150 179)(151 180)(152 181)(153 182)(154 183)(155 184)(156 185)(157 186)(158 187)(159 188)(160 189)(161 190)(162 191)(163 192)(164 193)(165 194)(166 195)(167 196)(168 169)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 77 189 138)(2 76 190 137)(3 75 191 136)(4 74 192 135)(5 73 193 134)(6 72 194 133)(7 71 195 132)(8 70 196 131)(9 69 169 130)(10 68 170 129)(11 67 171 128)(12 66 172 127)(13 65 173 126)(14 64 174 125)(15 63 175 124)(16 62 176 123)(17 61 177 122)(18 60 178 121)(19 59 179 120)(20 58 180 119)(21 57 181 118)(22 84 182 117)(23 83 183 116)(24 82 184 115)(25 81 185 114)(26 80 186 113)(27 79 187 140)(28 78 188 139)(29 161 111 217)(30 160 112 216)(31 159 85 215)(32 158 86 214)(33 157 87 213)(34 156 88 212)(35 155 89 211)(36 154 90 210)(37 153 91 209)(38 152 92 208)(39 151 93 207)(40 150 94 206)(41 149 95 205)(42 148 96 204)(43 147 97 203)(44 146 98 202)(45 145 99 201)(46 144 100 200)(47 143 101 199)(48 142 102 198)(49 141 103 197)(50 168 104 224)(51 167 105 223)(52 166 106 222)(53 165 107 221)(54 164 108 220)(55 163 109 219)(56 162 110 218)

G:=sub<Sym(224)| (1,175)(2,147)(3,177)(4,149)(5,179)(6,151)(7,181)(8,153)(9,183)(10,155)(11,185)(12,157)(13,187)(14,159)(15,189)(16,161)(17,191)(18,163)(19,193)(20,165)(21,195)(22,167)(23,169)(24,141)(25,171)(26,143)(27,173)(28,145)(29,97)(30,124)(31,99)(32,126)(33,101)(34,128)(35,103)(36,130)(37,105)(38,132)(39,107)(40,134)(41,109)(42,136)(43,111)(44,138)(45,85)(46,140)(47,87)(48,114)(49,89)(50,116)(51,91)(52,118)(53,93)(54,120)(55,95)(56,122)(57,106)(58,133)(59,108)(60,135)(61,110)(62,137)(63,112)(64,139)(65,86)(66,113)(67,88)(68,115)(69,90)(70,117)(71,92)(72,119)(73,94)(74,121)(75,96)(76,123)(77,98)(78,125)(79,100)(80,127)(81,102)(82,129)(83,104)(84,131)(142,212)(144,214)(146,216)(148,218)(150,220)(152,222)(154,224)(156,198)(158,200)(160,202)(162,204)(164,206)(166,208)(168,210)(170,211)(172,213)(174,215)(176,217)(178,219)(180,221)(182,223)(184,197)(186,199)(188,201)(190,203)(192,205)(194,207)(196,209), (1,189)(2,190)(3,191)(4,192)(5,193)(6,194)(7,195)(8,196)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,111)(30,112)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,103)(50,104)(51,105)(52,106)(53,107)(54,108)(55,109)(56,110)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,133)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,113)(81,114)(82,115)(83,116)(84,117)(141,197)(142,198)(143,199)(144,200)(145,201)(146,202)(147,203)(148,204)(149,205)(150,206)(151,207)(152,208)(153,209)(154,210)(155,211)(156,212)(157,213)(158,214)(159,215)(160,216)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,216)(2,217)(3,218)(4,219)(5,220)(6,221)(7,222)(8,223)(9,224)(10,197)(11,198)(12,199)(13,200)(14,201)(15,202)(16,203)(17,204)(18,205)(19,206)(20,207)(21,208)(22,209)(23,210)(24,211)(25,212)(26,213)(27,214)(28,215)(29,76)(30,77)(31,78)(32,79)(33,80)(34,81)(35,82)(36,83)(37,84)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(85,139)(86,140)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(141,170)(142,171)(143,172)(144,173)(145,174)(146,175)(147,176)(148,177)(149,178)(150,179)(151,180)(152,181)(153,182)(154,183)(155,184)(156,185)(157,186)(158,187)(159,188)(160,189)(161,190)(162,191)(163,192)(164,193)(165,194)(166,195)(167,196)(168,169), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,77,189,138)(2,76,190,137)(3,75,191,136)(4,74,192,135)(5,73,193,134)(6,72,194,133)(7,71,195,132)(8,70,196,131)(9,69,169,130)(10,68,170,129)(11,67,171,128)(12,66,172,127)(13,65,173,126)(14,64,174,125)(15,63,175,124)(16,62,176,123)(17,61,177,122)(18,60,178,121)(19,59,179,120)(20,58,180,119)(21,57,181,118)(22,84,182,117)(23,83,183,116)(24,82,184,115)(25,81,185,114)(26,80,186,113)(27,79,187,140)(28,78,188,139)(29,161,111,217)(30,160,112,216)(31,159,85,215)(32,158,86,214)(33,157,87,213)(34,156,88,212)(35,155,89,211)(36,154,90,210)(37,153,91,209)(38,152,92,208)(39,151,93,207)(40,150,94,206)(41,149,95,205)(42,148,96,204)(43,147,97,203)(44,146,98,202)(45,145,99,201)(46,144,100,200)(47,143,101,199)(48,142,102,198)(49,141,103,197)(50,168,104,224)(51,167,105,223)(52,166,106,222)(53,165,107,221)(54,164,108,220)(55,163,109,219)(56,162,110,218)>;

G:=Group( (1,175)(2,147)(3,177)(4,149)(5,179)(6,151)(7,181)(8,153)(9,183)(10,155)(11,185)(12,157)(13,187)(14,159)(15,189)(16,161)(17,191)(18,163)(19,193)(20,165)(21,195)(22,167)(23,169)(24,141)(25,171)(26,143)(27,173)(28,145)(29,97)(30,124)(31,99)(32,126)(33,101)(34,128)(35,103)(36,130)(37,105)(38,132)(39,107)(40,134)(41,109)(42,136)(43,111)(44,138)(45,85)(46,140)(47,87)(48,114)(49,89)(50,116)(51,91)(52,118)(53,93)(54,120)(55,95)(56,122)(57,106)(58,133)(59,108)(60,135)(61,110)(62,137)(63,112)(64,139)(65,86)(66,113)(67,88)(68,115)(69,90)(70,117)(71,92)(72,119)(73,94)(74,121)(75,96)(76,123)(77,98)(78,125)(79,100)(80,127)(81,102)(82,129)(83,104)(84,131)(142,212)(144,214)(146,216)(148,218)(150,220)(152,222)(154,224)(156,198)(158,200)(160,202)(162,204)(164,206)(166,208)(168,210)(170,211)(172,213)(174,215)(176,217)(178,219)(180,221)(182,223)(184,197)(186,199)(188,201)(190,203)(192,205)(194,207)(196,209), (1,189)(2,190)(3,191)(4,192)(5,193)(6,194)(7,195)(8,196)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,111)(30,112)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,103)(50,104)(51,105)(52,106)(53,107)(54,108)(55,109)(56,110)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,133)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,113)(81,114)(82,115)(83,116)(84,117)(141,197)(142,198)(143,199)(144,200)(145,201)(146,202)(147,203)(148,204)(149,205)(150,206)(151,207)(152,208)(153,209)(154,210)(155,211)(156,212)(157,213)(158,214)(159,215)(160,216)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,216)(2,217)(3,218)(4,219)(5,220)(6,221)(7,222)(8,223)(9,224)(10,197)(11,198)(12,199)(13,200)(14,201)(15,202)(16,203)(17,204)(18,205)(19,206)(20,207)(21,208)(22,209)(23,210)(24,211)(25,212)(26,213)(27,214)(28,215)(29,76)(30,77)(31,78)(32,79)(33,80)(34,81)(35,82)(36,83)(37,84)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(85,139)(86,140)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(141,170)(142,171)(143,172)(144,173)(145,174)(146,175)(147,176)(148,177)(149,178)(150,179)(151,180)(152,181)(153,182)(154,183)(155,184)(156,185)(157,186)(158,187)(159,188)(160,189)(161,190)(162,191)(163,192)(164,193)(165,194)(166,195)(167,196)(168,169), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,77,189,138)(2,76,190,137)(3,75,191,136)(4,74,192,135)(5,73,193,134)(6,72,194,133)(7,71,195,132)(8,70,196,131)(9,69,169,130)(10,68,170,129)(11,67,171,128)(12,66,172,127)(13,65,173,126)(14,64,174,125)(15,63,175,124)(16,62,176,123)(17,61,177,122)(18,60,178,121)(19,59,179,120)(20,58,180,119)(21,57,181,118)(22,84,182,117)(23,83,183,116)(24,82,184,115)(25,81,185,114)(26,80,186,113)(27,79,187,140)(28,78,188,139)(29,161,111,217)(30,160,112,216)(31,159,85,215)(32,158,86,214)(33,157,87,213)(34,156,88,212)(35,155,89,211)(36,154,90,210)(37,153,91,209)(38,152,92,208)(39,151,93,207)(40,150,94,206)(41,149,95,205)(42,148,96,204)(43,147,97,203)(44,146,98,202)(45,145,99,201)(46,144,100,200)(47,143,101,199)(48,142,102,198)(49,141,103,197)(50,168,104,224)(51,167,105,223)(52,166,106,222)(53,165,107,221)(54,164,108,220)(55,163,109,219)(56,162,110,218) );

G=PermutationGroup([[(1,175),(2,147),(3,177),(4,149),(5,179),(6,151),(7,181),(8,153),(9,183),(10,155),(11,185),(12,157),(13,187),(14,159),(15,189),(16,161),(17,191),(18,163),(19,193),(20,165),(21,195),(22,167),(23,169),(24,141),(25,171),(26,143),(27,173),(28,145),(29,97),(30,124),(31,99),(32,126),(33,101),(34,128),(35,103),(36,130),(37,105),(38,132),(39,107),(40,134),(41,109),(42,136),(43,111),(44,138),(45,85),(46,140),(47,87),(48,114),(49,89),(50,116),(51,91),(52,118),(53,93),(54,120),(55,95),(56,122),(57,106),(58,133),(59,108),(60,135),(61,110),(62,137),(63,112),(64,139),(65,86),(66,113),(67,88),(68,115),(69,90),(70,117),(71,92),(72,119),(73,94),(74,121),(75,96),(76,123),(77,98),(78,125),(79,100),(80,127),(81,102),(82,129),(83,104),(84,131),(142,212),(144,214),(146,216),(148,218),(150,220),(152,222),(154,224),(156,198),(158,200),(160,202),(162,204),(164,206),(166,208),(168,210),(170,211),(172,213),(174,215),(176,217),(178,219),(180,221),(182,223),(184,197),(186,199),(188,201),(190,203),(192,205),(194,207),(196,209)], [(1,189),(2,190),(3,191),(4,192),(5,193),(6,194),(7,195),(8,196),(9,169),(10,170),(11,171),(12,172),(13,173),(14,174),(15,175),(16,176),(17,177),(18,178),(19,179),(20,180),(21,181),(22,182),(23,183),(24,184),(25,185),(26,186),(27,187),(28,188),(29,111),(30,112),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,91),(38,92),(39,93),(40,94),(41,95),(42,96),(43,97),(44,98),(45,99),(46,100),(47,101),(48,102),(49,103),(50,104),(51,105),(52,106),(53,107),(54,108),(55,109),(56,110),(57,118),(58,119),(59,120),(60,121),(61,122),(62,123),(63,124),(64,125),(65,126),(66,127),(67,128),(68,129),(69,130),(70,131),(71,132),(72,133),(73,134),(74,135),(75,136),(76,137),(77,138),(78,139),(79,140),(80,113),(81,114),(82,115),(83,116),(84,117),(141,197),(142,198),(143,199),(144,200),(145,201),(146,202),(147,203),(148,204),(149,205),(150,206),(151,207),(152,208),(153,209),(154,210),(155,211),(156,212),(157,213),(158,214),(159,215),(160,216),(161,217),(162,218),(163,219),(164,220),(165,221),(166,222),(167,223),(168,224)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,216),(2,217),(3,218),(4,219),(5,220),(6,221),(7,222),(8,223),(9,224),(10,197),(11,198),(12,199),(13,200),(14,201),(15,202),(16,203),(17,204),(18,205),(19,206),(20,207),(21,208),(22,209),(23,210),(24,211),(25,212),(26,213),(27,214),(28,215),(29,76),(30,77),(31,78),(32,79),(33,80),(34,81),(35,82),(36,83),(37,84),(38,57),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(85,139),(86,140),(87,113),(88,114),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,121),(96,122),(97,123),(98,124),(99,125),(100,126),(101,127),(102,128),(103,129),(104,130),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(111,137),(112,138),(141,170),(142,171),(143,172),(144,173),(145,174),(146,175),(147,176),(148,177),(149,178),(150,179),(151,180),(152,181),(153,182),(154,183),(155,184),(156,185),(157,186),(158,187),(159,188),(160,189),(161,190),(162,191),(163,192),(164,193),(165,194),(166,195),(167,196),(168,169)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,77,189,138),(2,76,190,137),(3,75,191,136),(4,74,192,135),(5,73,193,134),(6,72,194,133),(7,71,195,132),(8,70,196,131),(9,69,169,130),(10,68,170,129),(11,67,171,128),(12,66,172,127),(13,65,173,126),(14,64,174,125),(15,63,175,124),(16,62,176,123),(17,61,177,122),(18,60,178,121),(19,59,179,120),(20,58,180,119),(21,57,181,118),(22,84,182,117),(23,83,183,116),(24,82,184,115),(25,81,185,114),(26,80,186,113),(27,79,187,140),(28,78,188,139),(29,161,111,217),(30,160,112,216),(31,159,85,215),(32,158,86,214),(33,157,87,213),(34,156,88,212),(35,155,89,211),(36,154,90,210),(37,153,91,209),(38,152,92,208),(39,151,93,207),(40,150,94,206),(41,149,95,205),(42,148,96,204),(43,147,97,203),(44,146,98,202),(45,145,99,201),(46,144,100,200),(47,143,101,199),(48,142,102,198),(49,141,103,197),(50,168,104,224),(51,167,105,223),(52,166,106,222),(53,165,107,221),(54,164,108,220),(55,163,109,219),(56,162,110,218)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P7A7B7C14A···14U14V···14AG28A···28X
order12···2222244444···4444477714···1414···1428···28
size11···12222444414···14282828282222···24···44···4

88 irreducible representations

dim1111111222222222244
type++++++++-+-++-++-
imageC1C2C2C2C2C2C4D4D4Q8D7C4○D4Dic7D14D14Dic14D28D4×D7D42D7
kernelC24.47D14C14.C42C2×C4⋊Dic7C2×C23.D7C14×C22⋊C4C23×Dic7C7×C22⋊C4C2×Dic7C22×C14C22×C14C2×C22⋊C4C2×C14C22⋊C4C22×C4C24C23C23C22C22
# reps1221118422341263121266

Matrix representation of C24.47D14 in GL6(𝔽29)

2800000
010000
0028000
0002800
0000280
0000028
,
100000
010000
0028000
0002800
000010
000001
,
2800000
0280000
001000
000100
0000280
0000028
,
2800000
0280000
001000
000100
000010
000001
,
010000
2800000
006000
005500
0000150
000002
,
010000
100000
0024100
003500
0000027
0000140

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,28,0,0,0,0,1,0,0,0,0,0,0,0,6,5,0,0,0,0,0,5,0,0,0,0,0,0,15,0,0,0,0,0,0,2],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,24,3,0,0,0,0,1,5,0,0,0,0,0,0,0,14,0,0,0,0,27,0] >;

C24.47D14 in GAP, Magma, Sage, TeX

C_2^4._{47}D_{14}
% in TeX

G:=Group("C2^4.47D14");
// GroupNames label

G:=SmallGroup(448,484);
// by ID

G=gap.SmallGroup(448,484);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,422,387,100,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=c,f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^13>;
// generators/relations

׿
×
𝔽